Telegram Group & Telegram Channel
Какие нелинейные преобразования данных вы знаете?

Нелинейные преобразования меняют структуру распределения. Это помогает улучшить модели, делая их способными улавливать сложные зависимости в данных.

Вот некоторые из наиболее распространённых нелинейных преобразований:
▪️Логарифмическое преобразование.
Оно позволяет увеличить расстояние между небольшими значениями и уменьшить между большими значениями. Преобразование делает скошенное распределение более симметричным и приближённым к нормальному.
▪️Преобразование с помощью квадратного корня.
Действует аналогично логарифмическому, однако менее агрессивно. Его без изменений можно применять к нулевым значениям.
▪️Преобразование Бокса-Кокса.
Обычно используется для трансформации зависимой переменной в случае, если у нас есть ненормальное распределение ошибок и/или нелинейность взаимосвязи, а также в случае гетероскедастичности.
▪️Преобразование Йео-Джонсона.
Позволяет работать с нулевыми и отрицательными значениями.

#машинное_обучение
#статистика



tg-me.com/ds_interview_lib/312
Create:
Last Update:

Какие нелинейные преобразования данных вы знаете?

Нелинейные преобразования меняют структуру распределения. Это помогает улучшить модели, делая их способными улавливать сложные зависимости в данных.

Вот некоторые из наиболее распространённых нелинейных преобразований:
▪️Логарифмическое преобразование.
Оно позволяет увеличить расстояние между небольшими значениями и уменьшить между большими значениями. Преобразование делает скошенное распределение более симметричным и приближённым к нормальному.
▪️Преобразование с помощью квадратного корня.
Действует аналогично логарифмическому, однако менее агрессивно. Его без изменений можно применять к нулевым значениям.
▪️Преобразование Бокса-Кокса.
Обычно используется для трансформации зависимой переменной в случае, если у нас есть ненормальное распределение ошибок и/или нелинейность взаимосвязи, а также в случае гетероскедастичности.
▪️Преобразование Йео-Джонсона.
Позволяет работать с нулевыми и отрицательными значениями.

#машинное_обучение
#статистика

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/312

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Библиотека собеса по Data Science | вопросы с собеседований from vn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA